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The nucleation of liquid droplets at a liquid-gas interface from a saturated vapor in the gas phase, as well as
the droplet growth after the nucleation are studied. These two processes determine the formation of a regular
hexagonal array of drops on the surface of an evaporating film of polymer solution that is used for the
fabrication of polymer membranes with a regular microporous structure. The free-energy barrier for the nucle-
ation of a droplet at a liquid-gas interface is found as a function of the droplet radius and the contact angles,
and the critical nucleation radius is computed. It is shown that the heterogeneous nucleation is thermodynami-
cally more preferable than the homogeneous one. The role of the line tension between the phases is also
estimated. Further growth of a droplet nucleated at the liquid-gas interface is studied. Two growth mechanisms
are considered: by the vapor diffusion flux from the gas phase and by the surface diffusion of the vapor
molecules adsorbed at the liquid-gas interface outside the droplet. Two cases, corresponding to unsaturated and
saturated condensation, are considered. The droplet growth is described by a free-boundary problem which is
solved analytically and numerically. The droplet growth exponents at different stages of growth are found.
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I. INTRODUCTION

Some time ago, an interesting process of self-assembly of
highly regular microporous structures in polymer films was
discovered �1–12�. In this process, a film of polymer solution
with a volatile organic solvent is placed on a substrate and
put in contact with a gas phase saturated with water vapor.
Due to the solvent evaporation, the film surface is cooled
which causes precipitation of microscopic water droplets at
the gas-liquid interface. Unlike the usual “breath figures,”
the ensemble of the floating droplets remains monodisperse
during their growth. Droplets do not coalesce but rather ag-
gregate into “islands” that grow and finally form a densely
packed “crystal” with a hexagonal lattice. After complete
evaporation of the solvent, a solid polymer film with a regu-
lar microporous structure is formed. Such polymer films with
highly regular microporous structure can be used as novel
biointerfaces �13�, photonic band gap devices �14,15�, di-
chroic filters �16�, picoliter beakers �11�, and other interest-
ing applications.

The key processes that determine the self-assembly of
condensing water droplets at a liquid-gas interface are the
nucleation of drops and their further growth. Droplet nucle-
ation on a solid substrate �heterogeneous nucleation� and
growth have been extensively studied �17–20�. It was shown
that the radius of a single droplet at different growth stages
increases with time according to a power law with different
exponents that depend on the growth mechanism �diffusion
or coalescence�, the surface properties, geometry, etc. One of
the growth mechanisms in heterogeneous nucleation is the
diffusion flux from the vapor phase considered in detail in
�19�. Another important droplet growth mechanism is surface
diffusion of vapor molecules adsorbed at the solid surface
towards the droplet attached to it. This process is described
by a free-boundary problem, which has been tackled in

�21,22� in static and quasistatic approximations. In �23� gen-
eralization of this problem for more general boundary con-
ditions was considered.

Nucleation of liquid droplets at a liquid-gas interface was
considerably less studied. The important difference is the
presence of the phase boundaries between three fluid phases
characterized by three different contact angles and surface
tensions. Nucleation from supersaturated water vapor on
n-hexadecane was studied in �24�, and the dependence of the
critical supersaturation on temperature was determined.

In the present paper we consider certain aspects of the
nucleation and growth of water droplets at a liquid-gas inter-
face cooled by evaporation. Namely, we focus on two topics:
�i� general analysis of the critical nucleation conditions in
order to determine which type of nucleation—homogeneous
or heterogeneous—is preferable and �ii� the droplet growth
law in the presence of two growth mechanisms—diffusion
flux from the vapor and surface diffusion flux at the inter-
face, as well as in the presence of other drops. We solve this
free-boundary problem numerically and compare the results
with asymptotic solutions.

II. NUCLEATION OF DROPLETS

In this section we consider the nucleation of water drop-
lets from a supersaturated vapor, near a liquid-gas interface
cooled by evaporation. Two types of nucleation can occur:
homogeneous nucleation, when the water nucleus appears in
the gas phase near the interface, and heterogeneous nucle-
ation, when the water nucleus is formed at the liquid-gas
interface as a small liquid lens. In order to decide which
nucleation type is more likely to occur, it is necessary to
compare the corresponding free-energy nucleation barriers.
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In the case of the homogeneous nucleation of a water
droplet in the bulk of the vapor phase, the critical nucleation
radius can be found from the standard expression for the
nucleation work �25�,

�Fhom�R� = − �P� − P�V + �13A , �1�

where P�-P is the pressure difference between the nucleus
and the bulk phase, V=4�R3 /3 is the volume of the spheri-
cal nucleus with the radius R, A=4�R2 is its surface area,
and �13 is the water-vapor interfacial tension �we refer to
water, solution, and vapor phases as phases 1, 2, and 3, re-
spectively�. Equation �1� contains a negative volume contri-
bution proportional to R3 and a positive interfacial contribu-
tion proportional to R2, and �Fhom�R� has a maximum at the
critical nucleation radius R=Rc

hom, given by

R = Rc
hom =

2�13

P� − P
. �2�

This critical nucleation radius determines the boundary be-
tween decaying fluctuations �R�Rc� and fluctuations leading
to the formation of the new phase �R�Rc�. The correspond-
ing free-energy barrier is

�Fc
hom =

16��13
3

3�P� − P�2 �3�

�see �25��.
Now consider the nucleation of a water droplet at the

gas-liquid interface �see Fig. 1�. Such a droplet can exist
under the condition of partial wetting, when the interfacial
tensions �ij between the phases i and j, i , j=1,2 ,3, satisfy
the relations �ij ��ik+� jk for any i, j, k. The nucleation
work is

�Fhet = − �P� − P�V + �13A13 + �12A12 − �23�R2, �4�

where Aij are the interfacial areas between the phases i and j,
and R is the radius of the three-phase contact line. The con-
tact angles �12 and �13 are determined by the following rela-
tions �26�:

cos �12 =
�23

2 + �12
2 − �13

2

2�12�23
, cos �13 =

�23
2 + �13

2 − �12
2

2�13�23
.

�5�

The volume of the droplet is given by

V =
�

3
R3A��12,�13� ,

where

A��12,�13� =
sin �12�2 + cos �12�

�1 + cos �12�2 +
sin �13�2 + cos �13�

�1 + cos �13�2 .

�6�

Using the expressions for the corresponding interfacial areas,

A12 =
2�R2

1 + cos �12
, A13 =

2�R2

1 + cos �13
,

and taking into account the stress balance equations

�12 sin �12 = �13 sin �13, �23 sin �13 = �12 sin��12 + �13�
�7�

�see Fig. 1�, one finds the change �Fs in the interfacial part
of the total free energy, determined by the last three terms on
the right-hand side of Eq. �4�, to be

�Fs = �R2�23B��12,�13� .

Here,

B��12,�13� =
2 sin �12

�1 + cos �13�sin��12 + �13�

+
2 sin �13

�1 + cos �12�sin��12 + �13�
− 1. �8�

Thus, we obtain the following expression for the nucleation
work:

�FR
het = − �P� − P�

�

3
R3A��12,�13� + �R2�23B��12,�13� .

�9�

The critical nucleation radius in this case is

Rc
het =

2�23

P� − P

B��12,�13�
A��12,�13�

=
2�23

P� − P

sin �12 sin �13

sin��12 + �13�
. �10�

The corresponding free-energy barrier is

σ

σ

σ
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A

A
V

1: WATER

3: VAPOR

2: SOLUTION

R
θ

θ12

13
13

12

FIG. 1. Liquid droplet at a liquid-gas interface.
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�Fc
het =

4��23
3

3�P� − P�2

B3��12,�13�
A2��12,�13�

=
4��23

3

3�P� − P�2

sin3 �12�2 − 3 cos �13 + cos3 �13� + sin3 �13�2 − 3 cos �12 + cos3 �12�
sin3��12 + �13�

. �11�

The dependence of �Fc
het on the angles �12 and �13 is equiva-

lent to that obtained in �24�.
Using the notations

x = tan
�12

2
, y = tan

�13

2
,

trigonometric identities, as well as Eqs. �7�, one can obtain
the ratio �Fc

het /�Fc
hom in the following simple form:

�Fc
het

�Fc
hom =

y3�x�3 + x2� + y�3 + y2��
�1 + y2�3 . �12�

It is easy to show that the ratio �12� is less than 1 for xy
�1, which is equivalent to the inequality �12+�13��. The
latter is always satisfied since otherwise the stress balance at
the contact line is not fulfilled �see Fig. 1�.

Thus, we come to the conclusion that, under the condi-
tions of partial wetting, the free-energy barrier of heteroge-
neous nucleation of a water droplet at a liquid-gas interface
is lower than that of the homogeneous nucleation in the gas
phase. Hence, it is more likely that the drops appear at the
interface than in the bulk. Note, however, that this analysis
ignores the possible presence of inhomogeneities and nucle-
ation centers �like dust, for example� in the bulk and at the
interface.

One can estimate the value of the critical nucleation ra-
dius �10�. The pressure difference can be estimated as

P� − P =
kT

vl
ln� P

Psat
� ,

where vl is the volume per molecule in the liquid phase, T is
temperature, Psat is the saturation pressure, and k is the Bolt-
zmann constant �25,27�. For sufficiently small �P= P− Psat,
the parameter ln�P / Psat���P / Psat. The latter parameter is
related to the temperature supersaturation parameter,
�T /Tsat, which can be more easily measured in experiment
using the empirical correlation �19�

�P

Psat
= � �T

Tsat
�0.8

.

In a typical experiment on the formation of a microporous
polymer film, �T is between 3 K and 20 K, while Tsat is
about 300 K, which gives �P / Psat between 0.025 and 0.1.
The volume per molecule for water, vl=M /�N, where M
=18 is the water molecular weight, �=103 kg/m3 is the wa-
ter density, and N=6.023�1023 is the Avogadro number. As-
suming �23�30 mN/m and B /A=0.75, we find that the
critical radius is between 6 nm and 25 nm. Thus, we con-
clude that the critical radius is rather small; however, the
macroscopic approach is still valid.

Finally, let us discuss a possible effect of the line tension
	 at the three-phase contact lines �28–31� on the above

analysis of droplet nucleation. If the line tension is present,
Eq. �4� for the nucleation work acquires an additional term
on the right-hand side and becomes

�Fhet = − �P� − P�V + �13A13 + �12A12 − �23�R2 + 	2�R ,

�13�

and the second of the stress balance conditions �7� changes to

��23 − 	/R�sin �13 = �12 sin��12 + �13� . �14�

Note that Eq. �14�, as the condition for mechanical equilib-
rium, follows from the minimization �zero variation� of the
sum of the surface and line energies. A typical value of 	 in
the case when no solid surface is present is about 10−12 N
�32�. Taking a typical value of the interfacial tension �23
=30 mN/m, we find that the line tension could be important
only for a droplet with the radius 	 /�23=0.3�10−10 m,
which is nonphysical. Hence, the effect of the line tension on
the nucleation of water droplets at a liquid-gas interfaces can
be neglected.

III. DROPLET GROWTH

In this section we consider the growth of a water droplet
that has nucleated at a liquid-gas interface from the saturated
vapor due to the interface evaporative cooling and has
formed a liquid lens shown in Fig. 1; at the interface, the
region occupied by part of the water droplet in contact with
the gas is a circle with the radius R*. We assume that the
droplet grows by means of the following two mechanisms:
attachment of water molecules directly from the humid gas
and attachment of water molecules adsorbed at the liquid-gas
interface from the vapor; thus, the radius R* is an increasing
function of time, t*.

In a typical experiment, a humid gas moves with a certain
speed U along the liquid-gas interface. Assuming that the gas
flow forms a laminar boundary layer with the characteristic
thickness 
, one can estimate the flux of water molecules j
from the gas phase to the interface using the following for-
mula for the Sherwood number �33,34�:

Sh = j
/D0c0 � Re1/2Sc1/2, �15�

where c0 is the concentration of water vapor at the edge of
the boundary layer, D0 is the bulk diffusion coefficient of
water molecules in the gas phase, Re=U
 /� is the Reynolds
number �� is the kinematic viscosity of the gas�, and Sc
=� /D0 is the Schmidt number. Note, however, that Eq. �15�
is valid if the vapor flux at the liquid-gas interface is deter-
mined by diffusion from the gas phase and all water mol-
ecules coming to the interface are adsorbed at it. This may
not be true since the adsorbed water molecules will block the
interface sites for the adsorption of other molecules. This
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effect of adsorption saturation can be described by multiply-
ing the diffusion flux by the fraction of the surface free for
adsorption; thus, one obtains j= js�1−c* /cs

*�, where js is the
saturated maximal flux which is determined by the interface
cooling caused by the solvent evaporation. Water molecules
adsorbed at the liquid-gas interface can lead to another ef-
fect: they can block the solvent evaporation and reduce the
evaporation rate. This will decrease the evaporative cooling
rate, increase the interfacial temperature and the equilibrium
concentration of water vapor, which, in turn, will decrease
the saturated diffusion flux js. This effect can be accounted
for by assuming that js��1−c* /cs

*�; thus, in this case j
��1−c* /cs

*�2. Note also that due to a nonlinear dependence
of the vapor equilibrium concentration on temperature, the
dependence of js on the decrease of the cooling rate propor-
tional to �1−c* /cs

*� may be more complicated and involve
some nontrivial exponents. Therefore, in the present paper,
we describe the effect of water molecules adsorbed at the
liquid-gas interface phenomenologically and consider the
flux j to be a function of the surface concentration of water
molecules, c*, in the form

j = js�1 − c*/cs
*�s, �16�

where cs
* is the saturation concentration, s is the saturation

exponent, and js is the maximal flux that depends on the
characteristics of the diffusion and thermal boundary layer at
the interface in the gas phase, interfacial temperature, vapor
saturation conditions, etc. Equation �16� with s=0 corre-
sponds to the nonsaturated vapor adsorption at the liquid-gas
interface, controlled by diffusion and described by Eq. �15�
with j= j0.

Thus, we shall consider two cases: �i� unsaturated conden-
sation, with the vapor flux described by �16� with s=0 and
�ii� saturated condensation, corresponding to Eq. �16� with
s�0.

A. Unsaturated condensation

In this subsection we consider the growth of a liquid drop-
let nucleated at a liquid-gas interface when the vapor diffu-
sion flux from the gas phase does not depend on the surface
concentration of water molecules. We also assume that the
vapor fluxes at the liquid-gas interface and at the droplet-gas
interface are given by the same constant value, j0. The sys-
tem configuration is shown in Fig. 2.

Diffusion of water molecules adsorbed at the liquid-gas
interface around the droplet, in the presence of similar drop-
lets nucleated at the interface, can be modeled by the follow-
ing radially-symmetric free-boundary problem for the sur-
face concentration of water molecules, c*�r* , t*�, and the
droplet radius R*�t*�:

�c*

�t* =
D

r*

�

�r*�r*�c*

�r*� + j0, R*�t*� � r* � Rb
*, �17�

where the radial coordinate r* is measured from the droplet
center at the interface, D is the surface diffusivity of the
adsorbed water molecules, and Rb

* is the size of the “basin” at
the interface from which the drop collects water molecules,

so that 2Rb
* is the average distance between the different

water droplets nucleated at the interface. We assume a com-
plete absorption of water molecules at the droplet boundary,
r*=R*,

c*
„R*�t*�,t*

… = 0, �18�

and the no-flux condition at the boundary of the “basin,”

� �c*

�r*�
r*=Rb

*
= 0. �19�

The droplet growth is governed by the mass balance equa-
tion

�

V0
�R*�2dR*

dt* = 2�R*D� �c*

�r*�
r*=R*�t*�

+ j0��R*�2, �20�

where V0 is the volume per one molecule in the water and �
is the geometric factor that determines the relation between
the droplet volume V* and the “interfacial radius” R*, V*

= �R*�3� /3. Since the nucleation time and the critical nucle-
ation radius are negligible in comparison with the character-
istic time of the droplet growth and the characteristic droplet
size, respectively, the following initial conditions can be
used:

c*�r*,0� = 0�0 � r* � Rb
*�, R*�0� = 0. �21�

Using the dimensionless variables

t =
t*

t0
, c =

c*

c0
, r =

r*

r0
, R =

R*

r0
, Rb =

Rb
*

r0
,

with the reference quantities

t0 =
�2D

�2j0
2V0

2 , c0 =
�2D

�2j0V0
2 , r0 =

�D

�j0V0
,

one can write the problem �17�–�21� in the following form:

�c

�t
=

1

r

�

�r
�r

�c

�r
� + 1, R�t� � r � Rb, t � 0, �22�

R2dR

dt
= �2R

�c

�r
�

r=R�t�
+ R2, t � 0, �23�

WATER
DROP

R(t)

HUMID      GAS

BOUNDARY
LAYER

ADSORBED 

WATER  MOLECULES

SURFACE DIFFUSION
FLUX

SOLUTION

C 0

VAPOR  FLUX

FROM GAS

C *

j

FIG. 2. A water droplet at a liquid-gas interface growing by
diffusion of vapor from the gas and surface diffusion of adsorbed
water molecules.

NEPOMNYASHCHY et al. PHYSICAL REVIEW E 74, 021605 �2006�

021605-4



r = R�t�: c = 0; r = Rb:
�c

�r
= 0; c�r,0� = 0; R�0� = 0.

�24�

First, we shall consider two analytically tractable limiting
cases: �i� Rb
1 �a sparse system of nuclei or large mass
flux� and �ii� Rb�1 �a dense system of nuclei or small mass
flux�.

1. The case Rbš1

Consider the limit Rb→� in Eqs. �24�, which corresponds
to a sparse system of nucleated droplets or large mass flux
onto a separate droplet. In this case it is convenient to re-
formulate the problem �22�–�24� in terms of integral equa-
tions. Consider an auxiliary problem

�c

�t
= �2c + 1 − J−�t�
�x,y� , �25�

which will be solved in the entire plane −��x ,y��, with
the initial condition c=0 at t=0. Here 
�x ,y� is the Dirac
delta function, so that the last term in Eq. �25� represents a
localized sink at the origin with as yet unknown strength. We
look for J−�t� and R�t� such that the conditions �23� and �24�
are satisfied. Then for r�R�t� the problems �22�–�24� and
�25�, �23�, and �24� are equivalent. Solution of Eq. �25� with
the zero initial condition can be written as

c�r,t� = t −
1

4�
	

0

t 1

	
exp�−

r2

4	
�J−�t − 	�d	 . �26�

Using the conditions �23� and �24� one obtains the following
system of two equations for the two unknowns R�t� and
J−�t�:

t =
1

4�
	

0

t 1

	
exp�−

R2�t�
4	

�J−�t − 	�d	 , �27�

dR

dt
=

1

4�
	

0

t 1

	2 exp�−
R2�t�

4	
�J−�t − 	�d	 + 1. �28�

The substitution 	= t /y transforms Eqs. �27� and �28� into

t =
1

4�
	

1

� 1

y
exp�−

R2�t�
4t

y�J−�t −
t

y
�dy , �29�

dR

dt
=

1

4�t
	

1

�

exp�−
R2�t�

4t
y�J−�t −

t

y
�dy + 1. �30�

Now we can derive approximate solutions of the integral
equations �29� and �30� for the limiting cases of small and
large times.

First we consider the case t�1. We assume that, for t
�1,

R2�t�
4t

� 1. �31�

This assumption can be verified a posteriori when the solu-

tion of the problem is found. Under this assumption the in-
tegrals in Eqs. �29� and �30� can be asymptotically evaluated.
Consider, for example, the integral in Eq. �30�. Making a
substitution

z =
R2�t�

4t
y 
 �y ,

we obtain

	
1

�

exp�−
R2�t�

4t
y�J−�t −

t

y
�dy

= �	
�

�

e−zJ−�t − �t/z�dz

� �	
�

�

e−zJ−�t�dz � �J−�t� =
R2�t�

4t
J−�t� . �32�

In a similar way, the integral in Eq. �29� can be asymptoti-
cally evaluated as

	
1

� 1

y
exp�−

R2�t�
4t

y�J−�t −
t

y
�dy � J−�t�ln

4t

R2 . �33�

Substituting Eqs. �32� and �33� into Eqs. �29� and �30� and
eliminating J−�t� yields the following differential equation
for R�t�:

dR

dt
=

4t

R2 ln�4t/R2�
, R�0� = 0. �34�

The change of variables

R�t� = �36t2w�	��1/3, 	 = − ln t ,

reduces Eq. �34� to

dw

d	
= 2w −

1

	 + 2 ln 2/�9w�
, w��� = 0.

Neglecting the logarithmic term for large 	, one finds

w�	� = e2		
	

� 1

s
e−2sds �

1

2	
�	 
 1� .

Finally,

R�t� � � 18t2

ln
1

t
�

1/3

. �35�

Now we consider the case t
1. We assume that in this
limit R2�t� /4t
1, which can be verified a posteriori. In this
case, Eq. �29� is satisfied by the ansatz

R�t� = vt, J−�t� = atbev2t, �36�

with

a = 8
�v, b = 3/2. �37�

Substituting Eqs. �36� and �37� into Eq. �30� one finds v=3.
Thus, for t
1, the droplet radius R�t��3t.
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The concentration profile c�r , t� can also be determined
from the integral equations. It is easier, however, to deter-
mine the concentration directly from Eqs. �22�–�24�. In order
to do it we make a coordinate transformation

x = r/R�t� ,

so that the moving free-boundary problem �22�–�24� reduces
to a problem over a time-independent spatial region x�1:

�c

�t
− x

1

R

dR

dt

�c

�x
=

1

R2

1

x

�

�x
�x

�c

�x
� + 1, x � 1, t � 0,

�38�

dR

dt
= � 2

R2

�c

�x
�

x=1
+ 1, t � 0, �39�

x = 1: c = 0; x = �:
�c

�x
= 0; c�x,0� = 0; R�0� = 0.

�40�

Note that we consider here Rb=� and retain the same nota-
tion c�x , t� for the unknown concentration as used before
when the concentration was a function of r and t.

We consider the long-time behavior of the solution. Thus,
we introduce a small parameter � and scale the time t as t
=	 /�, where 	 is an O�1� quantity. We also rescale the other
variables in the problem as

x = 1 + ��, c�x,t� =
1

�
a��,	�, R�t� =

1

�
��	� .

Equation �38� takes the form

�a

�	
−

1

�
�1 + ���

1

�

d�

d	

�a

��
=

1

�

1

�2

1

1 + ��

�

��
��1 + ���

�a

��
� + 1,

�41�

� � 0, 	 � 0.

Equation �41� reduces at the leading order in ��1 to

−
1

�

d�

d	

�a

��
=

1

�2

�2a

��2 , � � 0. �42�

The boundary conditions are

a�0,	� = 0, a��,	� = 	 . �43�

The second boundary condition is due to the fact that be-
cause of the presence of the unit source term in Eq. �38�,

c��,t� = t .

The solution of Eqs. �42� and �43� is

a��,	� = 	�1 − exp�− �
d�

d	
��� .

Thus, for large t,

c�x,t� = t�1 − exp�− R
dR

dt
�x − 1��� , �44�

so that

� �c

�x
�

x=1
= tR

dR

dt
,

and the equation for the droplet radius takes the form

dR

dt
=

2t

R

dR

dt
+ 1. �45�

An implicit form solution of Eq. �45� is

R2�3t − R� = const.

For large t,

R�t� � 3t ,

in agreement with the result obtained with the use of integral
equations.

The long-time solution �44� can be written in terms of the
original variables as

c�r,t� � t�1 − exp�−
dR

dt
�r − R�t���� �r � 3t� , �46�

and for R=3t it reduces to

c�r,t� � t�1 − exp�− 3�r − 3t��� �r � 3t� . �47�

We have verified the accuracy of the obtained approxi-
mate asymptotic solutions by solving the problem �22�–�24�
numerically by means of a finite-difference method with cen-
tral differences in space, the Crank-Nicholson time-
integration scheme for the concentration field, and with the
predictor-corrector approach for R�t� in which the radius of
the droplet was updated at the predictor step and the updated
radius was used at the corrector step. The results of the nu-
merical computations up to t=10 are shown in Figs. 3 and 4;
they demonstrate the accuracy of the approximate solution.

Accidentally, the analytical solution obtained for t
1
provides a reasonably good approximation to the numerical
solution not only for t
1 but also for t=O�1�. This is illus-
trated by Fig. 5, where the concentration profiles are com-
pared at time t=1.

We finally conclude that in the case Rb
1 the droplet
radius grows according to the law �35� at the early stage of
the process and with a constant speed at later stages.

2. The case Rb™1

Now consider the case Rb�1, which corresponds to a
dense system of nucleated droplets at the liquid-gas interface
or a small mass flux onto a separate droplet. In this case it is
convenient to make the coordinate transformation

x =
r

R�t�
,

so that the moving boundary of the droplet would become
stationary. Using the new variable, the problem �22�–�24�
can be written as
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�c

�t
− x

1

R

dR

dt

�c

�x
=

1

R2

1

x

�

�x
�x

�c

�x
� + 1, 1 � x �

Rb

R�t�
, t � 0,

�48�

dR

dt
= � 2

R2

�c

�x
�

x=1
+ 1, t � 0, �49�

x = 1: c = 0; x =
Rb

R
:

�c

�x
= 0; c�x,0� = 0; R�0� = 0.

�50�

Rescaling the variables, c=Rb
2C, R=Rb�, and t=Rb	, we

obtain

Rb
�C

�	
− Rb

2 x

�

d�

d	

�C

�x
=

1

�2

1

x

�

�x
�x

�C

�x
� + 1, 1 � x �

1

�
,

t � 0,

d�

d	
= � 2

�2

�C

�x
�

x=1
+ 1, t � 0,

x = 1: C = 0; x =
1

�
:

�C

�x
= 0; C�x,0� = 0; ��0� = 0.

�51�

For Rb�1, after a short transient period of the order 	
�Rb, the solution of the initial value problem �51� tends to
the solution of the leading-order stationary problem which is
given by

C =
1

2
ln x +

�2

4
�1 − x2� . �52�

Substituting Eq. �52� into Eqs. �51�, one obtains d� /d	
=�−2, so that ���3	�1/3 and

R � �3Rb
2t�1/3 �53�

or, in dimensional quantities,

R* � �3�Rb
*�2r0t*/t0�1/3.

Figure 6 compares the approximate solution with a numeri-
cal solution of Eqs. �22�–�24�. One can see that, at the initial
stage of growth, the difference between the numerical solu-

1 1.05 1.1 1.15
0

2

4

6

8

10

x

c

FIG. 3. Numerical and analytical solutions of the problem
�22�–�24�. Profiles of the concentration c as a function of the spatial
variable x=r /R�t� at time t=10; numerical and analytical solutions
are almost indistinguishable.

0 2 4 6 8 10
0

10

20

30

t

R

FIG. 4. Numerical and analytical solutions of the problem
�22�–�24�. The dependence of the radius R on time t, 0� t�10; the
analytical solution provides a good approximation to the numerical
solution for almost all times �except for t small�; the upper curve is
the numerical solution.

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

x

c

1 2 
3 

FIG. 5. Numerical and analytical solutions of the problem
�22�–�24� at time t=1. The figure displays profiles of the concen-
tration c as a function of the spatial variable x=r /R�t�. Curve �1�,
analytical solution �47�; curve �2�, analytical solution �46� with nu-
merically determined R=3.4 and dR /dt=3.1 �at time t=1�; curve
�3�, numerical solution.
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tion of the full problem and the asymptotic solution is about
5%.

B. Saturated condensation

We now consider the case when vapor condensation at the
liquid-gas interface depends on the interfacial concentration
of water molecules so that the vapor flux to the interface
from the gas phase is given by Eq. �16� with s�0. We as-
sume here that the vapor is condensing only at the interface
between the gas and solution, but it is not condensing at the
droplet-gas interface, since the latter is not cooled by the
solvent evaporation. Note that this effect is not accounted for
by Eq. �16�: this equation determines the dependence of the
vapor diffusion flux from the gas on the concentration of
water molecules adsorbed around the droplet sitting at the
liquid-gas interface �see Fig. 1� and growing only due to the
surface diffusion of the adsorbed water molecules �see Fig.
2�. Also, here we shall study the growth of a single droplet in
an infinite domain—i.e., in the absence of other droplets.
Thus, we consider the following problem for the surface con-
centration of water molecules, c*,

�c*

�t* =
D

r*

�

�r*�r*�c*

�r*� + js�1 − c*/cs
*�s, R*�t*� � r*,

�54�

c*�R*�t*�,t*� = 0, � �c*

�r*�
r*=�

= 0, �55�

�

V0
�R*�2dR*

dt* = 2�R*D� �c*

�r*�
r*=R*�t*�

, �56�

c*�r*,0� = 0 �r* � 0�, R*�0� = 0. �57�

We introduce the dimensionless variables

t =
t*

t0
, c =

c*

c0
, cs =

cs
*

c0
, r =

r*

r0
, R =

R*

r0
,

with the reference quantities

c0 =
�2D

�2jsV0
2 , t0 =

c0

js
, r0 = 
Dt0,

to obtain the following dimensionless problem:

�c

�t
=

1

r

�

�r
�r

�c

�r
� + �1 − c/cs�s, R�t� � r, t � 0, �58�

R2dR

dt
= 2R� �c

�r
�

r=R�t�
, t � 0, �59�

r = R�t�: c = 0; r = �:
�c

�r
= 0, c�r,0� = 0, R�0� = 0.

�60�

Below we compare three particular cases corresponding
to three different values of the saturation exponent s: no
saturation, s=0; linear saturation, s=1; and oversaturation,
s
1. In each case we determine the droplet growth law for
large times, t
1.

The no-saturation case, s=0, is similar to that discussed in
the previous subsection; the only difference between the
problems �22�–�24� and �58�–�60� is the absence of the con-
densation source term in Eq. �59�. Thus, instead of Eq. �45�
we obtain

dR

dt
=

2t

R

dR

dt
,

yielding the linear asymptotic law of the droplet growth,

R�t� � 2t .

In the linear saturation case s=1, it is convenient to make
the coordinate transformation, x=r /R�t�, which reduces the
problem to

�c

�t
− x

1

R

dR

dt

�c

�x
=

1

R2

1

x

�

�x
�x

�c

�x
� + 1 −

c

cs
, x � 1, t � 0,

�61�

dR

dt
= � 2

R2

�c

�x
�

x=1
, t � 0, �62�

x = 1: c = 0; x = �:
�c

�x
= 0, c�x,0� = 0, R�0� = 0.

�63�

For t
1 we rescale the variables as

t =
	

�
, x = 1 + 
��, c�x,t� = a��,	�, R�t� =

1

�

��	� ,

to obtain, at the leading order in ��1,

0 2 4 6 x 10
t

–30.006

0.01

0.014

0.018

R

FIG. 6. Dependence of the droplet radius R on time t. Here Rb

=0.02. The upper curve is the numerical solution of the problem
�22�–�24�. The lower curve is the analytic solution �53�.

NEPOMNYASHCHY et al. PHYSICAL REVIEW E 74, 021605 �2006�

021605-8



1

�2

�2a

��2 + 1 −
a

cs
= 0, a�0,	� = 0, � �a

��
�

�=�

= 0,

d�

d	
=

2

�2� �a

��
�

�=0
.

The solution of this problem is given by

a = cs − exp�− ��/
cs�, � =
2

cs
1/4


	 .

Thus, in the linear saturation case the radius of the droplet
grows for large times as

R�t� �
2

cs
1/4


t .

The oversaturated case s→� is described by the follow-
ing problem:

�c

�t
=

1

r

�

�r
�r

�c

�r
�, r � R�t�, t � 0, �64�

R2dR

dt
= 2R� �c

�r
�

r=R�t�
, t � 0, �65�

r = R�t�: c = 0; r = �: c = cs, c�r,0� = 0, R�0� = 0.

�66�

For t
1 one has R�t�
1, and Eq. �64� can be replaced by

�c

�t
=

�2c

�r2 , r � R�t�, t � 0. �67�

The problem �65�–�67� has the following self-similar solu-
tion:

c�r,t� = cs erf� r − R�t�
2
t

� . �68�

Substituting Eq. �68� into Eq. �65� and solving the resulting
equation yields

R�t� = �8cs


�
�1/2

t1/4.

We observe that the growth law of the droplet depends on
the saturation exponent s, R�t�� t�s, with �0=1, �1=1/2, and
��=1/4. Based on these three results, one can suggest the
following interpolation formula for the growth exponent �s:

�s =
2 + s

2 + 4s
.

The growth exponent �1=1/2 differs from those pre-
dicted by previous theories �17–23�.

IV. CONCLUSIONS

We have studied the nucleation and growth of liquid drop-
lets at a liquid-gas interface cooled by evaporation. We have
shown that the ratio of the nucleation barriers for homoge-
neous and heterogeneous nucleations depends only on the
contact angles that characterize the droplet shape �liquid
lens� nucleated at the liquid-gas interface. Analyzing this de-
pendence we have concluded that heterogeneous nucleation
is always more likely to occur than the homogeneous one.

We have studied the growth of a droplet nucleated at a
liquid-gas interface in the case when the growth is caused by
the combination of two mechanisms: diffusion flux from the
vapor phase onto the part of the droplet surface resting above
the liquid and surface diffusion flux of molecules adsorbed at
the liquid-gas interface onto the droplet interface boundary.
We have considered two cases, depending on whether the
diffusion flux from the vapor phase, j, depends on the sur-
face concentration c* of the adsorbed water molecules: un-
saturated condensation, when j does not depend on c*, and
saturated condensation, when j depends on c* according to
Eq. �16�.

We have shown that the droplet growth caused by these
two mechanisms can be described by a free-boundary prob-
lem, and we have solved this problem numerically and ana-
lyzed the solutions asymptotically in various limits. As a
result, we have found the exponents of the growth power law
at different stages of the droplet growth. In the unsaturated
condensation case, we have found that the growth law de-
pends not only on the growth stage �small or large time� but
also on the presence of other drops—namely, whether the
system of drops nucleated at the interface is sparse or dense.
We have shown that for a sparse system of drops the drop
radius grows initially as �t2 / ln�1/ t��1/3. This growth law is
different from those obtained previously in the static and
quasistatic approximations. We have also shown that at the
later stages in this limit the droplet radius grows linearly in
time. However, this crossover does not involve the droplet
coalescence, it follows just from the properties of the free-
boundary problem. At the very late stages, when the drops
grew into a dense system, the growth law exhibits the second
crossover, to a slower growth rate �t1/3. In the case of satu-
rated condensation, our investigation of the growth of a
single droplet shows that the growth exponent depends on
the degree of saturation. In particular, in the case of linear
saturation given by s=1 in Eq. �16�, we have shown that the
late stage growth exponent is 1 /2. It would be interesting to
verify this conclusion in experiments.
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